Law invariant risk measures on L∞(Rd)
نویسندگان
چکیده
Kusuoka (2001) has obtained explicit representation theorems for comonotone risk measures and, more generally, for law invariant risk measures. These theorems pertain, like most of the previous literature, to the case of scalar-valued risks. Jouini-Meddeb-Touzi (2004) and Burgert-Rüschendorf (2006) extended the notion of risk measures to the vector-valued case. Recently Ekeland-Galichon-Henry (2009) obtained extensions of the above theorems of Kusuoka to this setting. Their results were confined to the regular case. In general, Kusuoka’s representation theorem for comonotone risk measures also involves a singular part. In the present work we give a full generalization of Kusuoka’s theorems to the vector-valued case. The singular component turns out to have a richer structure than in the scalar case.
منابع مشابه
Convex Risk Measures Beyond Bounded Risks, or The Canonical Model Space for Law-Invariant Convex Risk Measures is L^1
In this paper we provide a rigorous toolkit for extending convex risk measures from L∞ to L, for p ≥ 1. Our main result is a one-to-one correspondence between law-invariant convex risk measures on L∞ and L. This proves that the canonical model space for the predominant class of law-invariant convex risk measures is L. Some significant counterexamples illustrate the many pitfalls with convex ris...
متن کاملStrong Law of Large Numbers and Mixing for the Invariant Distributions of Measure-valued Diffusions
Let M(Rd) denote the space of locally finite measures on Rd and let M1(M(Rd)) denote the space of probability measures on M(Rd). Define the mean measure πν of ν ∈M1(M(Rd)) by πν(B) = ∫ M(Rd) η(B)dν(η), for B ⊂ R. For such a measure ν with locally finite mean measure πν , let f be a nonnegative, locally bounded test function satisfying < f, πν >= ∞. ν is said to satisfy the strong law of large n...
متن کاملSubgradients of Law-Invariant Convex Risk Measures on L
We introduce a generalised subgradient for law-invariant closed convex risk measures on L and establish its relationship with optimal risk allocations and equilibria. Our main result gives sufficient conditions ensuring a non-empty generalised subgradient.
متن کاملThe Canonical Model Space for Law - invariant Convex Risk Measures is L 1 ∗
In this paper we establish a one-to-one correspondence between lawinvariant convex risk measures on L∞ and L. This proves that the canonical model space for the predominant class of law-invariant convex risk measures is L.
متن کاملThe Canonical Model Space for Law-invariant
In this paper we establish a one-to-one correspondence between lawinvariant convex risk measures on L∞ and L. This proves that the canonical model space for the predominant class of law-invariant convex risk measures is L.
متن کامل